Consequences of approximating electron correlation effects
نویسندگان
چکیده
منابع مشابه
Investigation of electron correlation effects in armchair silicene nanoribbons
In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...
متن کاملElectron Cloud Clearing - Electron Cloud Effects and Technological Consequences
This report contains the Proceedings of the joint CARE-HHH-APD, CARE ELAN, and EUROTEV-WP3 Mini-Workshop on ‘Electron Cloud Clearing Electron Cloud and Technological Consequences’, “ECL2”, held at CERN in Geneva, Switzerland, 1-2 March 2007). The ECL2 workshop explored novel technological remedies against electron-cloud formation in an accelerator beam pipe. A primary motivation for the worksho...
متن کاملElectron correlation effects in small iron clusters
We present results of first-principles calculations of structural, magnetic, and electronic properties of small Fe clusters. It is shown that, while the lowest-energy isomers of Fe3 and Fe4 obtained in the framework of density functional theory within the generalized gradient approximation (GGA) are characterized by Jahn-Teller-like distortions away from the most regular shapes (which is in agr...
متن کاملElectron correlation effects in the Fe dimer.
The potential energy surface of the Fe dimer is investigated on the basis of density functional theory in the generalized gradient approximation (GGA). Electron correlation effects are taken into account explicitly within the GGA+U approach. We find a value of 2.20 eV for the Coulomb repulsion parameter U to describe the Fe dimer best, yielding a 9 Sigma(g)- ground state with an interatomic sep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Physics
سال: 2022
ISSN: ['1362-3028', '0026-8976']
DOI: https://doi.org/10.1080/00268976.2022.2146540